Detecting and Predicting Clusters of **Evolving Binary Stars**

Adviser & Client: Goce Trajcevski Team email: sdmay21-30@iastate.edu Team website: http://sdmay21-30.sd.ece.iastate.edu/ Group Members: Adam Corpstein, Joel Holm, Willis Knox, Becker Mathie, Philip Payne, Ethan Vander Wiel

Introduction

Problem

- Astrophysicists manage numerous databases of generated stellar evolutions.
- Generated stellar evolutions include attributes to describe each star (i.e. Mass, Luminosity, Helium abundance)
- Each star has multiple timesteps. As these timesteps increment, attributes gradually change.
- Methods are needed to organize and analyze data

time_id	tphys	kstar_1	mass0_1	mass_1	lumin_1	rad_1	teff_1
1	0.1	1	12.26615	12.26615	10612.93	3.386865	31976.4
2	0.2	1	12.26613	12.26613	10637.99	3.394414	31959.66
3	0.3	1	12.2661	12.2661	10663.46	3.401981	31943.18
4	0.4	1	12.26608	12.26608	10689.33	3.409569	31926.95
5	0.5	1	12.26606	12.26606	10715.61	3.417177	31910.98
6	0.6	1	12 26603	12 26603	10742 31	3 424808	31805 24

Solution

- One method is clustering: grouping together similar data points into clusters.
- Multiple algorithms to cluster
 - K-Means
 - DBScan
- Visualizing clusters with 2D and 3D graphs

Operating Environment

- Linux Server
- Ubuntu 2004 LTS

Engineering Constraints

- Existing Dataset(s)
- Internet Access
- Server Size

Relevant Standards

- 24765-2010 ISO/IEC/IEEE International Standard
 - Software Engineering Vocabulary Standard
- Modules for Experiments in Stellar Astrophysics (MESA)
 - Simulation standard for astrophysical data

Intended Users and Uses

- Astrophysicists
- Researchers using stellar data

Stellar Data Providers

- Sloan Digital Sky Survey
- Gaia Archive

Functional Requirements

- Accept User Specified Input
 - Clustering Method
 - Attributes of Interest
 - Attribute Weight Time Intervals
- Display Results to End

6 Review & Submit

Database:

The query to submit:

Clustering Method:

Number of Clusters:

Selected Attributes:

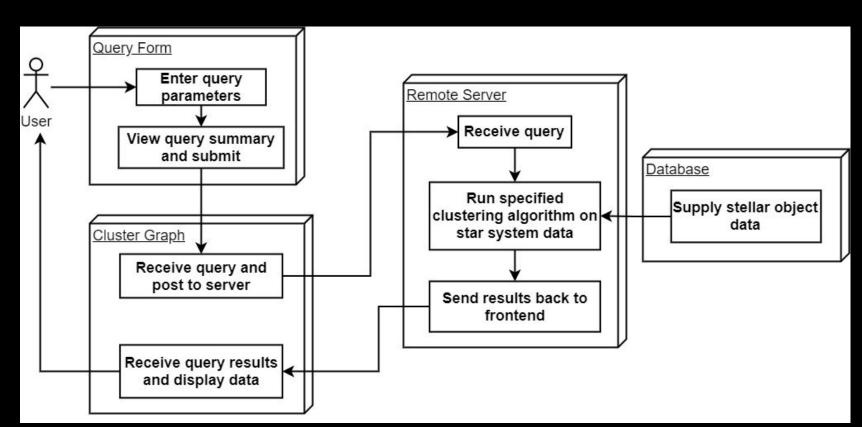
Time Step Interval:

Reset

Submit

Standardizer:

- Users
 - o 2D and 3D Graphs


Non-Functional Requirements

- Request time ~ 1 min per time step
- 24/7 Server up time
- User Interaction with graph

0.5

0.25

Concept Sketch

Core Functional Modules

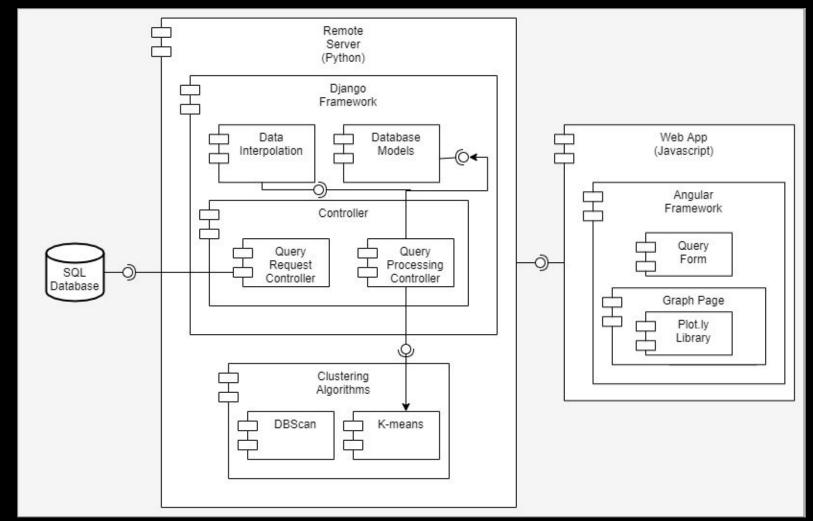
Frontend Modules

Query Form, Cluster Graph Page

Backend Modules

 Remote Server, Database

Testing


Backend (the APIs)

- Unit testing
- Algorithm interaction testing
- API request testing

Frontend (the UI)

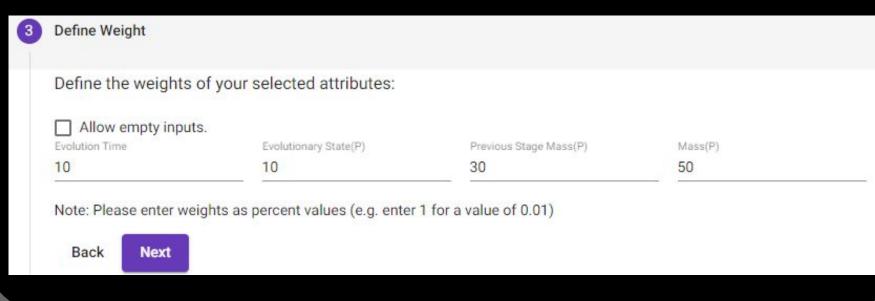
- Cypress Automated tests
 - End-to-end tests
 - Robustness testing

Block Diagram

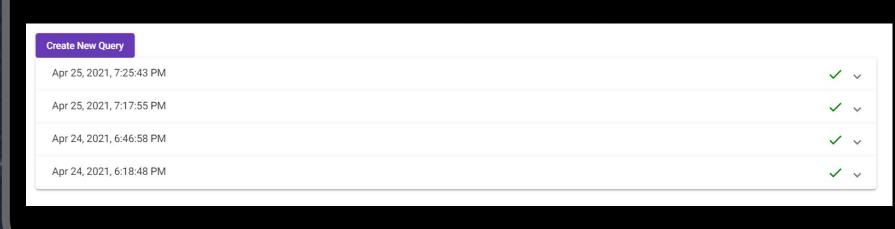
Technical Details (Technologies Used)

Frontend

- Angular
- Angular-plotly


DevOps

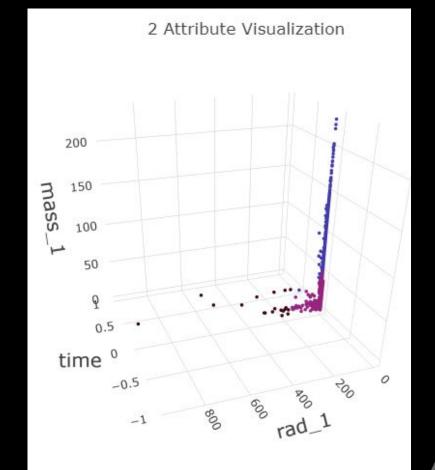
- Gitlab CI/CD
- Docker


Backend

- Postgresql (Database)
- Django (Web Framework)
- Clustering and Interpolation
 - sklearn.cluster
 - Numpy.interp

Attribute Weight Input

Query Queue System

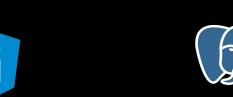

Query Submission

COSMIC K-Means MinMax Attribute Name Weight 0.25 Mass(P)

Luminosity(P)

Radius(P)

min: 5 | max: 10



Cluster Visualization

