Detecting and Predicting Clusters of Evolving Binary Stars

Adam Corpstein, Becker Mathie, Ethan Vander Wiel, Joel Holm, Philip Payne, Willis Knox

Adviser/Client: Goce Trajcevski

### Agenda

- Team Introduction
- Project Vision
- Requirements and Constraints
- Project Plan
- System Diagrams
- Schedule and Milestones
- Testing
- Conclusion

## Team Introduction

#### Team Roles

Becker Mathie - Chief Engineer

Joel Holm - Facilitator

Ethan Vander Wiel - Test Engineer

Philip Payne - Quality Assurance

Willis Knox - Scribe

Adam Corpstein - Report Manager

# **Project Vision**

### Problem Statement

### Problem

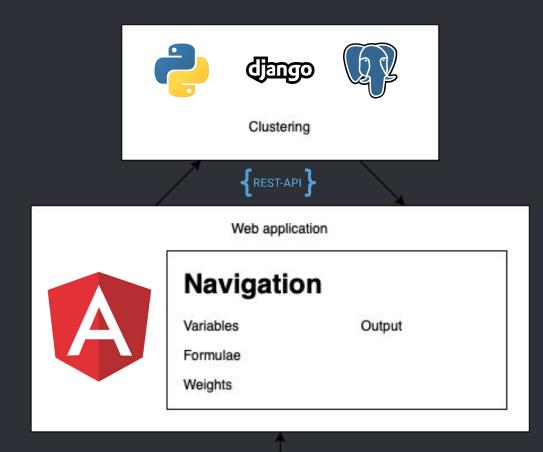
- Organize binary-stars into groups (clusters)
- Predict future states of data

### Challenges

- Multiple clustering algorithms
- No-other-way but simulation
- Big datasets

### Solution

- App to track stellar evolution
- Cluster binary star systems
- Aimed at astrophysicists





 Cluster formation detection over time

Predict stellar co-evolution

### Conceptual Diagram

- User enters from our site url (no login)
- Front end will have 4 main aspects
  - Variables
  - Formulae
  - Weights
  - Output\*
- Inputs our processed by our backend through a rest-api





## Requirements and Constraints

### Functional Requirements

- Selection of attributes (i.e. Luminosity, Mass)
- Select cluster algorithm (i.e. DBScan, K-means)
- Select preprocessing (i.e. Noise reduction, scaling)
- Simulation of future star properties
- Select time range
- Visualize data

#### Non-Functional Requirements

- Efficient cluster request responses ( < 20 seconds)
- Simultaneous user count ( < 1000 )</li>
- Scalable databases
- Environmental requirement: Internet access
- Economic requirement: Personal computer

#### Constraints and Assumptions

- Required background knowledge
- Data complexity
- Capabilities of clustering algorithms
- Features (data types) present in database

# **Project Plan**

### Risks and Mitigation Plan

- Additional clustering algorithms
  Focus on extendable architecture
- Alternative data visualization
  - Versatile Javascript graphics libraries
- COVID-19
  - Social distancing practices
  - Focus on communication

### Technology Stack

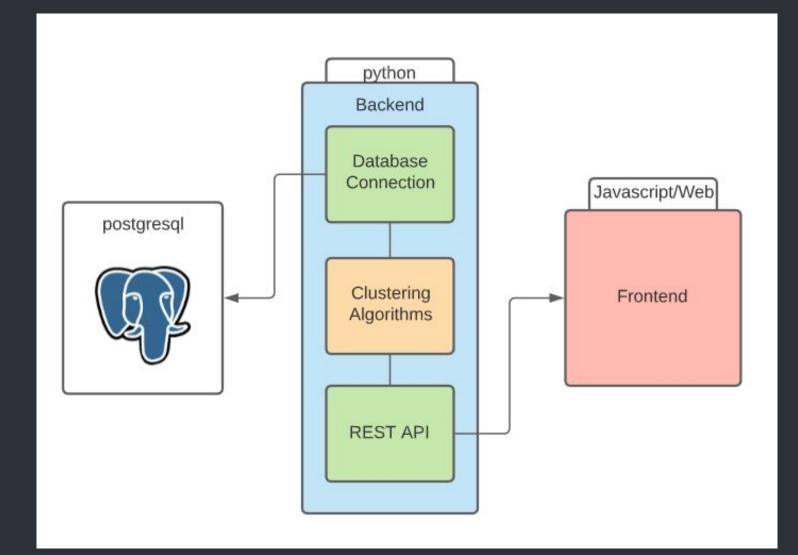
- Django Web Framework
  - COSMIC
  - scikit-learn
  - PostgreSQL
- Angular Framework/Angular Material









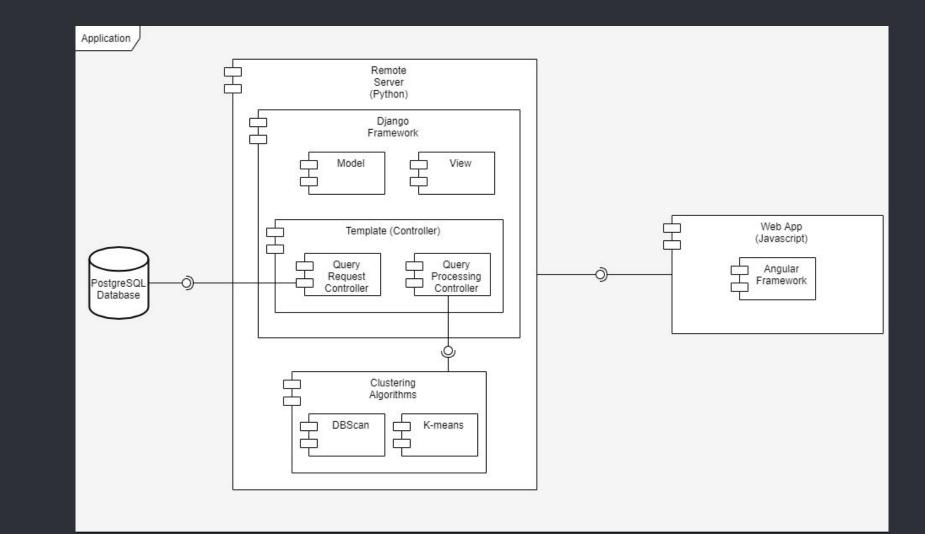

14



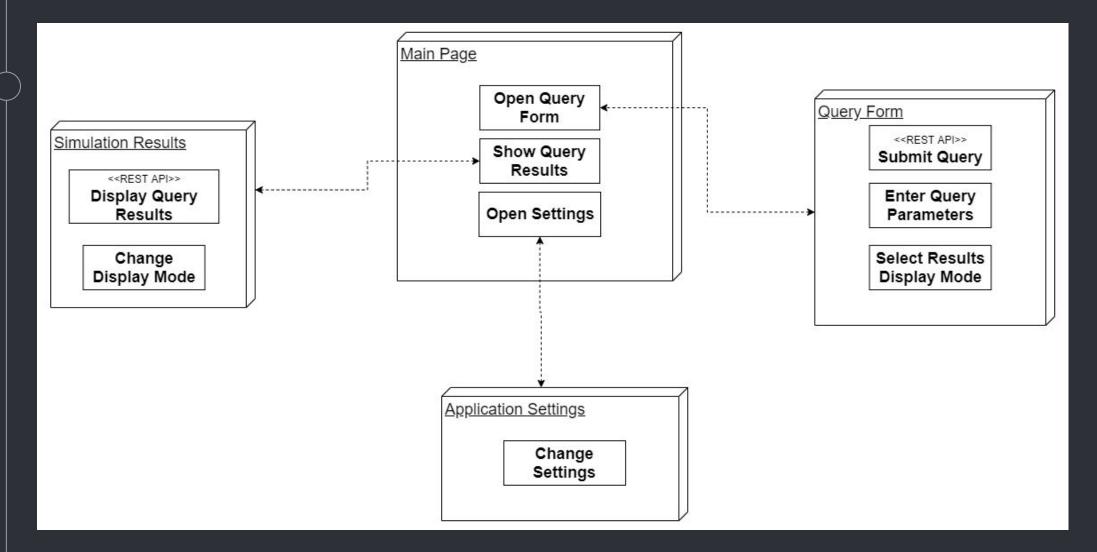
# django

### System Diagrams

### High Level Architecture




### Preliminary UI


- User selects attributes
- Formulae & weights rely on variables
- Adaptive UI

|                              | 🖋 Variables                                                    | 5                                                                      |
|------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
|                              | Helium                                                         | $\checkmark$                                                           |
|                              | Mass                                                           | $\checkmark$                                                           |
|                              | Luminosity                                                     | $\checkmark$                                                           |
|                              | Ð                                                              |                                                                        |
|                              | X <sup>²</sup> Formulae                                        | 2                                                                      |
| Helium                       | $rac{\nu-\mu}{\sigma}$ $\checkmark$ 65.0                       | $\left[\frac{\frac{average(v_1, v_2)}{range}}{\checkmark}\right]$ 35.0 |
| Mass                         | $\frac{v}{v_{max}}$ $\checkmark$ 50.0                          | $\frac{\max(v_1, v_2)}{range} \checkmark 50.0$                         |
| Luminosity                   | $\frac{\nu-\mu}{\sigma}$ $\checkmark$ 100.0                    | $\frac{\frac{average(v_1, v_2)}{range}}{\checkmark} \bigvee 0.0$       |
| Helium<br>Mass<br>Luminosity | کی Weights                                                     | 63.6<br>20.3<br>16.1                                                   |
|                              | Outpu                                                          | t                                                                      |
|                              | Graph<br>3D Scatterplot<br>Prediction Time<br>10 Million Years | V                                                                      |
|                              | Simulate                                                       |                                                                        |

#### Component Diagram



### Frontend Design



## Schedule and Milestones

#### Progression Metrics

- Algorithm Choice
- Determine Software
- Choose Distance Functions
- Preliminary Query UI
- Round Trip Communication

• CI/CD

- Clustering by one data type
- Graphical Display
- Useable alpha/beta stages
- Cluster by multiple data types
- Clustering Evolution

| Amplitude<br>Scaling | Offset<br>Translation | Divide by<br>Maximum Value | Minmax<br>Normalization   | Ratio Between<br>Stars | Average Over<br>Range                               | Difference Over<br>Range                 |
|----------------------|-----------------------|----------------------------|---------------------------|------------------------|-----------------------------------------------------|------------------------------------------|
| <u>ν-μ</u><br>σ      | ν – μ                 | $\frac{v}{v_{max}}$        | <u>v – min</u><br>max–min | $\frac{v_1}{v_2}$      | $\frac{\textit{average}(v_1, v_2)}{\textit{range}}$ | $\left  \frac{v_1 - v_2}{range} \right $ |
| Normalizing          | Normalizing           | Normalizing                | Normalizing               | Normalizing            | Non-normalizing                                     | Non-normalizing                          |

#### Milestone Schedule

Planning and Preparation Aug 31 - Oct 25

Research

Use Cases

Algorithm Choice

**Development** Oct 26 - Apr 5

Front End UI

Mockups

Alpha Release

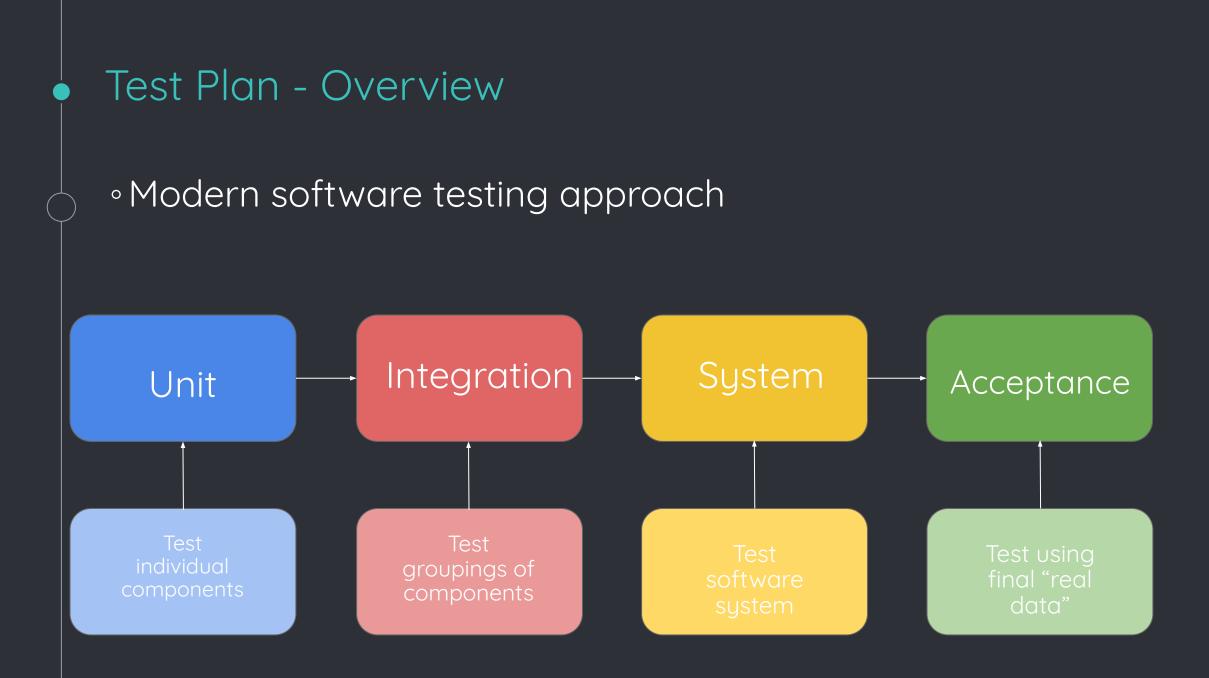
Beta Release

Modifications

Testing

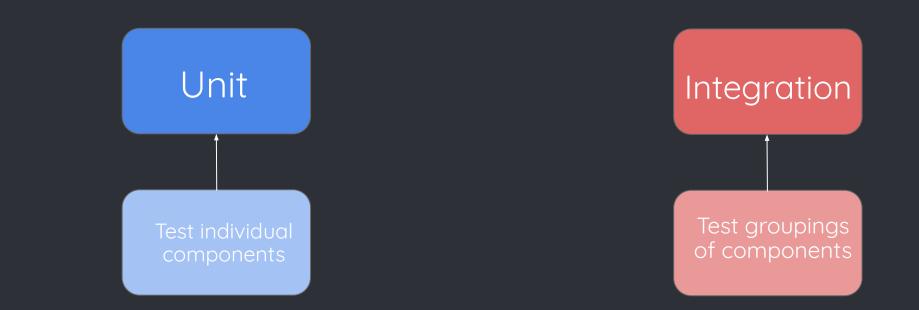
**Final Release** Apr 6 - Apr 30

Collect Feedback


User Manual

Product Release

### Full Schedule


| Task List                                         | August Septe |  | eptember |  | October |       |  | November |        |         |  | January |          |   |  | February |        |  | March |      |      | Aj | pril | ril   |  |       |
|---------------------------------------------------|--------------|--|----------|--|---------|-------|--|----------|--------|---------|--|---------|----------|---|--|----------|--------|--|-------|------|------|----|------|-------|--|-------|
| Familiarize with Clustering Algorithms            |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Consider Possible Software Tools and Platforms    | 3012         |  |          |  |         |       |  |          |        | 232     |  |         | - 18     | 2 |  |          | 2<br>2 |  | ii    |      | 8032 |    |      | 8     |  |       |
| Finalize Attributes and Distance Functions        |              |  |          |  | 1       |       |  |          |        | - 33    |  |         | - 22     |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Select Development Platforms and Arch. Design     |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       | 1    |      |    |      |       |  |       |
| Prelimiary UI Design                              |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Finailize Selection of Algorithm Solutions        |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Devise Use Cases and Test Cases                   |              |  |          |  |         | 22.62 |  |          |        | 2 33    |  |         |          |   |  |          |        |  |       | - 32 |      |    |      | <br>2 |  | . 3   |
| Finalize UI Functionality                         |              |  | <br>4-53 |  |         | 50 32 |  |          |        | 1-10    |  |         | - 50     |   |  |          |        |  |       | 55   | 3-35 |    |      | <br>6 |  |       |
| K-Means                                           |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| DBScan                                            | 30           |  |          |  |         | 12 24 |  |          |        | 2-29    |  |         |          | 2 |  |          |        |  | ò6    | 2    | 3-3  |    |      | <br>8 |  | - 18  |
| Algorithm and Distance Function Research          |              |  |          |  |         | 20102 |  |          | 28 - C | 5 - 323 |  |         |          |   |  |          |        |  |       | 100  |      |    |      | 20    |  | - 323 |
| Outline Use Cases in Diagram                      |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Test Planning                                     |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Prepare Design Presentation                       |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Finalize Roles and Start Impementing Arch. Models |              |  | - 23     |  |         | 22.62 |  |          |        | 1 33    |  |         | 22.0     |   |  |          |        |  |       | 22   |      |    |      | 2     |  | - 31  |
| Complete Unit Testing; Begin Integration Testing  | 3            |  | <br>455  |  |         | 75 33 |  |          |        | 2-153   |  |         | - 50 - 5 |   |  |          |        |  |       | - 10 | 8-37 |    |      | 8     |  | 5-15  |
| Provide Alpha Version for End User                |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Finalize Revisions                                | 36           |  | s        |  |         | 15 34 |  |          |        | 2       |  |         | 193      | x |  |          |        |  |       | 10   |      |    | Ĩ    | 8     |  |       |
| Release Beta Version for End User                 |              |  |          |  |         | 29 62 |  |          |        | 5 - 323 |  |         | - 329 0  |   |  |          |        |  |       |      | 1    |    |      |       |  | :     |
| Finailize User Manual; Prep for Public Release    |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Deploy Final Version                              |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Final Presentation and Report                     |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |
| Final Demo                                        |              |  |          |  |         |       |  |          |        |         |  |         |          |   |  |          |        |  |       |      |      |    |      |       |  |       |

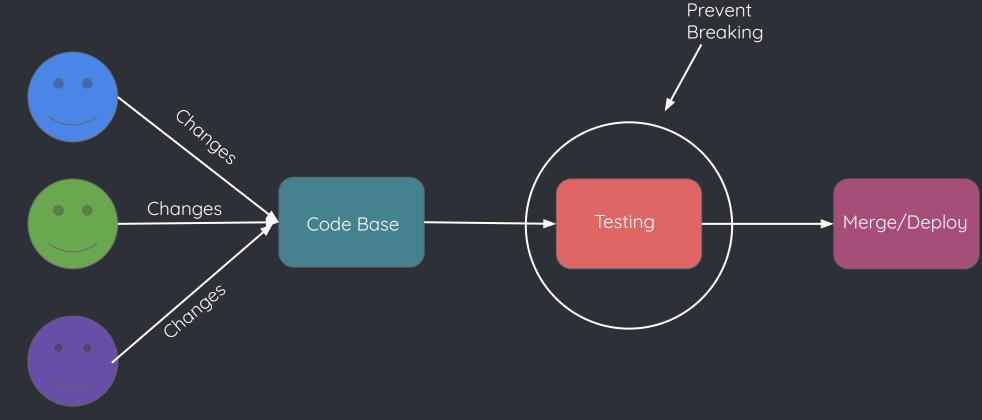




### • Unit and Integration Testing

- Tests using "mock" data
- Test UI and Backend (separately)
- Tests our functional requirements




### System and Acceptance Testing

- Tests entire system
- Communication between subsystems
- Finalizes customer requirements
- Automatically maintain changes to production



### CI/CD

- Ensures new code compliance
- Deploys automatically



### Conclusion

Next Steps

• Research, design, technology choices, DB

Reserve server space

• Start UI and backend implementation in Django

Set up automated tests and CI/CD

Move backend to new server space

#### Individual Contributions

- Adam Corpstein Team Website, Documentation/Azure Website
- **Becker Mathie -** Project Timeline/planning, Determining technologies, Test planning
- Ethan Vander Wiel UI Design, Distance Functions, Testing lead
- Joel Holm Functional/Non-Functional Requirements, Constraints and Assumptions, Risks & Mitigation
- **Philip Payne -** Architecture design, UML diagram design, Quality control
- Willis Knox DB implementation, Distance Functions, Meeting Notes
  Each member helped with general assignments, presentations, and report writing

