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Overview
• Project Background

• Implementation

• Demo

• Lessons Learned
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Project 
Background
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Problem

• Large amount of binary star data

• Hard to determine which systems are 

similar

• Want to find/determine evolution patterns

Problem Statement
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Solution

• App to track stellar evolution

• Cluster binary star systems

• Aimed at astrophysicists 

• Cluster formation detection over 

time



Requirements
Functional
• Web-based
• Accept User Input

• Clustering Method
• Attributes of Interest
• Attribute Weights
• Time Intervals

• Display Resulting Graphs
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Non-Functional
• Requests placed into queue
• 24/7 Uptime
• User-Graph Interaction
• Reasonable Response Time



Requirements cont.
Environmental
• Internet connection
• Remote server connection 

with database

Economic
• User needs personal 

computer
• Server space (paid for by ISU)
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Intended Users and Uses
• Astrophysicists

• Researchers using stellar data

• Sloan Digital Sky Survey

• Gaia Archive
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Assumptions & Limitations
● Assumptions

○ Available Internet Access

○ Background Knowledge on data

● Limitations

○ Features in database
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Implementation
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Design Approach
High Level Architecture

10

sdmay21-30



Design Approach (cont.)
Component 
Diagram
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Technologies Used
• Angular Framework (Web)

• Angular Material
• Plotly

• Python (API)
• Django Framework
• scikit-learn

• PostgreSQL
• Gitlab (CI/CD)
• Docker (For deployment and testing)
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CI/CD
• GitLab CI for pipeline

• Build, Test, and Deploy stages
• Only deploy on master

• Deployment
• Docker image for both UI and API

• NGINX based image for UI
• Python based image for API
• Same as testing environment

• Docker compose for deployments
• Easy to deploy anywhere
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User Interface (Home page)
● Create new queries

● View saved queries
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User Interface (Query Form Page)
● Database, attribute, weight, cluster algorithm, and 

extra parameter selection
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User Interface (Graph Page)
● Different graphs

○ 1 attribute over time (2D)

○ 2 attributes over time (3D)

○ 3 attributes with time as 

input (3D)
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Standards Used
● Modules For Experiments In Stellar Astrophysics 

(MESA): Planets, Oscillations, Rotation, And 
Massive Stars
○ Standardizes MESAstar, a stellar evolution module

○ Output from these simulations are input into our 

application
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Testing (Frontend)
● Cypress (automated 

testing tool)

○ End-to-end tests

■ Use Case 

Scenarios

■ Robustness 

testing
18

sdmay21-30



Testing (Backend)
● Django included testing library

○ Unit testing

■ Clustering algorithms interaction

■ Database access 

○ HTTP Request testing

■ Correct handling of requests & responses
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Demo
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https://docs.google.com/file/d/10KWArvOsmspxlMl9-iTfX9abEtqREx9F/preview


Lessons 
Learned
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Lessons Learned
• Anticipate issues and ask client early on

• Use generality to future proof additions

• Maintain open communication between 

frontend and backend

• Cleary define testing conditions 
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Q&A
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Email: sdmay21-30@iastate.edu


