
Detecting and Predicting Clusters 
of Evolving Binary Stars
sdmay21-30

Adam Corpstein, Joel Holm, Willis Knox, Becker Mathie, 
Philip Payne, Ethan Vander Wiel

Advisor/Client: Goce Trajcevski



Overview
• Project Background

• Implementation

• Demo

• Lessons Learned

2

sdmay21-30



Project 
Background

3

sdmay21-30



Problem

• Large amount of binary star data

• Hard to determine which systems are 

similar

• Want to find/determine evolution patterns

Problem Statement

4

sdmay21-30

Solution

• App to track stellar evolution

• Cluster binary star systems

• Aimed at astrophysicists 

• Cluster formation detection over 

time



Requirements
Functional
• Web-based
• Accept User Input

• Clustering Method
• Attributes of Interest
• Attribute Weights
• Time Intervals

• Display Resulting Graphs

5

sdmay21-30

Non-Functional
• Requests placed into queue
• 24/7 Uptime
• User-Graph Interaction
• Reasonable Response Time



Requirements cont.
Environmental
• Internet connection
• Remote server connection 

with database

Economic
• User needs personal 

computer
• Server space (paid for by ISU)

6

sdmay21-30



Intended Users and Uses
• Astrophysicists

• Researchers using stellar data

• Sloan Digital Sky Survey

• Gaia Archive

7

sdmay21-30



Assumptions & Limitations
● Assumptions

○ Available Internet Access

○ Background Knowledge on data

● Limitations

○ Features in database

8

sdmay21-30



Implementation

9

sdmay21-30



Design Approach
High Level Architecture

10

sdmay21-30



Design Approach (cont.)
Component 
Diagram

11

sdmay21-30



Technologies Used
• Angular Framework (Web)

• Angular Material
• Plotly

• Python (API)
• Django Framework
• scikit-learn

• PostgreSQL
• Gitlab (CI/CD)
• Docker (For deployment and testing)

12

sdmay21-30



CI/CD
• GitLab CI for pipeline

• Build, Test, and Deploy stages
• Only deploy on master

• Deployment
• Docker image for both UI and API

• NGINX based image for UI
• Python based image for API
• Same as testing environment

• Docker compose for deployments
• Easy to deploy anywhere

13

sdmay21-30



User Interface (Home page)
● Create new queries

● View saved queries

14

sdmay21-30



User Interface (Query Form Page)
● Database, attribute, weight, cluster algorithm, and 

extra parameter selection

15

sdmay21-30



User Interface (Graph Page)
● Different graphs

○ 1 attribute over time (2D)

○ 2 attributes over time (3D)

○ 3 attributes with time as 

input (3D)

16

sdmay21-30



Standards Used
● Modules For Experiments In Stellar Astrophysics 

(MESA): Planets, Oscillations, Rotation, And 
Massive Stars
○ Standardizes MESAstar, a stellar evolution module

○ Output from these simulations are input into our 

application

17

sdmay21-30



Testing (Frontend)
● Cypress (automated 

testing tool)

○ End-to-end tests

■ Use Case 

Scenarios

■ Robustness 

testing
18

sdmay21-30



Testing (Backend)
● Django included testing library

○ Unit testing

■ Clustering algorithms interaction

■ Database access 

○ HTTP Request testing

■ Correct handling of requests & responses

19

sdmay21-30



Demo

20

sdmay21-30



21

https://docs.google.com/file/d/10KWArvOsmspxlMl9-iTfX9abEtqREx9F/preview


Lessons 
Learned

22

sdmay21-30



Lessons Learned
• Anticipate issues and ask client early on

• Use generality to future proof additions

• Maintain open communication between 

frontend and backend

• Cleary define testing conditions 

23

sdmay21-30



Q&A

24

sdmay21-30

Email: sdmay21-30@iastate.edu


