
Detecting and Predicting Clusters of
Evolving Stellar Systems

Final Report

Client/Advisor: Goce Trajcevski

Team Members:
Adam Corpstein

Joel Holm

Willis Knox

Becker Mathie

Philip Payne

Ethan Vander Wiel

Team Email:
sdmay21-30@iastate.edu

Team Website:
https://sdmay21-30.sd.ece.iastate.edu

04/25/2021

mailto:sdmay21-30@iastate.edu
https://sdmay21-30.sd.ece.iastate.edu


Table of Contents
Final Report 1

Table of Contents 2

Project Introduction 4
Acknowledgement 4
Problem and Project Statement 4
Intended Users and Uses 4
Assumptions and Limitations 4

Assumptions 5
The user can connect to the internet 5
The user has a basic understanding of clustering and weighting functions 5

Limitations 5
The application should not overuse the client’s hardware 5
Types of clustering data is limited to what is in the pre-existing databases 5

Requirements 5
Functional Requirements 5
Non-Functional Requirements 6
Environmental Requirements 6
Economic Requirements 6

Revised Project Design 6
Architecture Diagram 7
Component Diagram 7

Implementation Details 8
Frontend Design 8
Backend Design 8
Deployment 9
Engineering Standards Used 9

Testing Process and Testing Results 9
Frontend Testing 9
Backend Testing 10
Testing Results 10

Related Literature 10
Clustering Algorithms 10

K-means 10
DBScan 10

Research Papers 11
Computing Longest Duration Flocks in Trajectory Data 11

2



Discovery of Convoys in Trajectory Databases 11

Closing Material 12
References 12

Appendix A - Design Document 12

Appendix B - User Manual 13
Home Page 13
Query Page 13
Graph Page 16

Appendix C - Deployment Manual 19
Creating Tables 19
Importing Data 19
Deploying Application 19

3



Project Introduction

Acknowledgement
The team would like to thank the Electrical and Computer Engineering department at Iowa State
University for the resources and education we have received throughout our time spent at the
university. We would also like to thank Professor Goce Trajcevski for his efforts in and outside
our weekly meetings. His feedback and advice has guided our team greatly.

Problem and Project Statement
As astrophysicists continue to record data for stellar systems, new possibilities for research
emerge. Large databases exist full of stellar data. This includes attributes such as red shift,
mass ratio, hydrogen ratio, etc. Astrophysicists would like the ability to organize this data into
clusters so that any two systems with similar attributes are in the same cluster and dissimilar
systems are in different clusters. Astrophysicists are generating their own data for future states
of stellar systems. This would add the dimension of time to the data (since the lifetime of a
stellar system could be millions of years, simulating future states is necessary). By organizing
clusters by time, further analysis can be taken as this stellar data mature.

The driving force for this project is to organize stellar data to aid astrophysicists in their
research. To solve the problem of organizing stellar data, we’ve applied pre-existing clustering
algorithms to the datasets. The datasets have had their data interpolated. Interpolating data
allows any two stellar systems with different time scales to be compared. From the webpage
astrophysicists can select their desired database, attributes, weight values, clustering algorithm,
and other parameters. This data is sent to the web server to generate clusters. After generating
the clustered data, users can visualize using 2D and 3D graphs. These graphs represent the
data over a single or range of timesteps.

Intended Users and Uses
The end users for this project are astrophysicists who are researching and/or working with
stellar data. These astrophysicists are used to working with stellar data provided by Sloan
Digital Sky Survey or the Gaia Archive. They may be familiar with the query language SQL as
it’s used in these websites.

Assumptions and Limitations
We have come up with the following assumptions and limitations to refine the scope of the
problem statement.

4



Assumptions

The user can connect to the internet
We are assuming that our intended users have access to the internet. Without an internet
connection, a user does not have the capability to access the application, and therefore they will
be unable to use it.

The user has a basic understanding of clustering and weighting functions
We are assuming that users have enough knowledge about the provided clustering techniques
to understand how it affects the output data. Related to this, the user will need to provide their
own weights in regards to each attribute. This also affects the output data, so users will need a
solid grasp of how to write their own weighting functions.

Limitations

The application should not overuse the client’s hardware

All algorithmic work, such as data normalization and star clustering, will need to be completed
on the server and not on the user’s device. This is to ensure the application stays responsive
and easy to use.

Types of clustering data is limited to what is in the pre-existing databases

The different types of data the users will be able to select for clustering is limited to what
information is stored in the databases the application will be accessing. Since we are
connecting to well established, pre-existing databases, the users must restrict their clustering
queries to types of data that these databases currently contain.

Requirements
Functional Requirements

● A web based application with a user interface for analyzing stellar evolutions.

● Users are able to configure which parameters are of interest for clustering

● Users are able to apply specific weights to their selected parameters that determine the
level of importance of each parameter when clustering

● Users have the ability to specify specific intervals of interest for clusters

○ This interval could either be an explicit time range or a more general event based
range

5



● Given the user specified information, a remote server will access stellar data from a
database and then compute how different stellar systems will cluster during their
evolution

● The possibility for additional databases to be added for clustering functionality. These
databases need not be related to stellar data. Any data that evolves with respect to time
may be utilized.

● Databases added will be interpolated based on timesteps. This will create a uniform time
scale for every data set.

Non-Functional Requirements
● Cluster requests are placed into a queue system to allow the user to make multiple

requests at once.

● The server is equipped to handle less than 100 simultaneous users.

● Server should be available 24/7 with weekly server resets

Environmental Requirements
● The application requires internet connection to be functional. This connection needs to

be constant and stable to allow users to access the application at any time

● The remote server needs to have the capability to connect to multiple databases

Economic Requirements
● Laptops or personal computers are needed to interact with the user interface of the

application

● Iowa State University has provided our team with a remote server to host our application.
All costs associated with the server are paid for by Iowa State

Revised Project Design
To start, our system handles events on the frontend. Here, a user chooses different algorithms,
weights of data, and output styles they want. The frontend compiles this information and sends
it to the backend via a REST request. The backend processes the received information, queries
for data using an SQL connection, and runs the simulation. After the simulation is completed,
the backend will send the information back to the frontend as a REST response and the
frontend will display it. This process is quick and efficient, but powerful enough to handle almost
any desired simulation from the user.

6



Architecture Diagram

Component Diagram

7



Implementation Details

Frontend Design
The front end was designed and mostly implemented without communication to the backend.
Using angular, we were able to  implement the initial design components and get a good
prototype quickly which left us time to implement the more complicated data rendering and
backend communicating parts of the frontend.

The most difficult part of the frontend was the data rendering. The data coming from our
backend is complex and needs to be organized properly for effective visualization. This also
required some research into the best graphing techniques to render clustering data.

Communication with the backend was not difficult as all modern javascript frameworks come
ready to communicate with REST APIs.

Backend Design
Our backend needed to accomplish three main goals. First was to connect to our database and
get relevant data for clustering. Next was to parse the data, apply needed normalization
functions, and run our clustering algorithms. Lastly, we needed the backend to connect with our
frontend through a REST API and send back the necessary results of our clustering.

Connecting the backend to our database was quite easy. Python can quickly connect to local
PostgreSQL databases using environment variables for a username and password. We can run
simple queries to get the requested star data and pass that to our clustering algorithms.

8



For clustering, we mostly used pre-existing libraries that performed the clusters for us. All the
backend needed to do was prep the data to be processed by the clustering algorithms in a
meaningful way.

Finally, we send the resulting data back to the frontend as an HTTP response that can easily be
parsed.

Deployment
For deployment, we use two docker images, one for the UI and one for the API. These images
are based on our testing environment so we can be confident that our application will perform
the same in both production and testing environments. We use docker compose to deploy those
images with all of our secrets - which includes passwords, configurations and more - to our
production server.

Engineering Standards Used
In the implementation, there were two databases integrated into our backend. These databases
followed standards presented in [1]. This paper describes a tool used by astrophysics. The tool
is called MESAstar and it simulates stellar data. Given an initial set of attributes, it can predict
how those attributes will change over long periods of time. If humans had recorded stellar data
for the past millions of years, then we would use that data. Since our records are in their infancy,
compared to the lifecycle of stars, we need to simulate data. Astrophysicists simulate data within
the standards presented in this paper.

Testing Process and Testing Results
As for testing, our first step was to get CI/CD and basic unit tests working towards the beginning
of our implementation. Ensuring that updates to the system don’t collapse our backend is a
requirement of any software development team. Unit tests helped to maintain a consistent goal
of the system despite any changes.

Frontend Testing
The front end is tested using the Cypress framework. This is a widely used framework that
provides functionality for end-to-end tests. End-to-end tests run through a use case scenario.
For example, one path that we test is a successful user query ending on the cluster visualization
page. Since the tests are written in Cypress, in the future they can be used as regression tests.
These will validate that previous requirements haven’t been impacted by new changes. We’ve
also written robustness tests. These tests go over edge cases where user input is invalid. We
test that the code responds in a healthy way so the application keeps running normally and the
user is prompted to what they did wrong.

9



Backend Testing
For backend testing we wanted to focus on a few key parts of our application. The first is testing
the REST API itself. We wanted to make sure requests to the backend were handled properly,
including meaningful status codes, edge cases for poor input, and successful attempts to
request information. Not only do we need to ensure users can only give valid information to the
backend (through frontend testing), we need to be careful that if invalid information is requested
that our backend handles it correctly.

The next thing we wanted to test is correct use of our algorithms. Since we are importing a lot of
the key algorithms in our project, we are assuming the implementations are correct. However,
we can still test how our backend gives and receives data through the algorithms.

Testing Results
One technical challenge we ran into with testing was verifying the results of our application.
Since the information we produce is complicated in nature, it is challenging to make meaning
out of our results. Above that, being able to verify that our final data is correct is a process that
will need to be peer reviewed by scientists using the application.

With more time to implement our project, we would have added more interaction with the
scientific community to ensure our data is meaningful.

Our goal with frontend testing was making sure use cases were covered and data is properly
received and sent to the backend. The goal of the backend testing was ensuring that data is
handled and used in a satisfactory way.

Related Literature
Clustering Algorithms
K-means

● One of the clustering algorithms we’re using is K-means. This is a well known process and has
many descriptions/tutorials on the internet. The main reference point for our implementation of
K-means is derived from the article K-means: A Complete Introduction from the website
towardsdatascience.com [2].

DBScan

● A second clustering algorithm is DBScan. This algorithm is also well known and documented on
the website towardsdatascience.com under an article titled DBSCAN Clustering — Explained [3].

Both of these algorithms are already implemented in a common Python library: scikit-learn [4]. Our team
decided to leverage this free to use library for this project instead of trying to directly rewrite these
clustering algorithms ourselves.

10



Research Papers
The following research papers introduce similar problems that are solved via clustering algorithms.
Concepts and implementation details are pertinent to our clustering of stellar data through time.

Computing Longest Duration Flocks in Trajectory Data
This paper presents the concept of monitoring flocks and meetings during a period of time. The concepts
of flocks and meetings are expanded to include the specification varying or fixed; this is all a variation of
our notion of clusters. Algorithms are provided for each cluster type and efficiency is discussed [5].

Discovery of Convoys in Trajectory Databases
This paper discusses three algorithms for finding clusters during a period of time. Each tracted node
moves along a “trajectory”, computing which trajectories are closest to each other is the problem. The
paper presents a density based clustering algorithm and adds optimizations to increase efficiency [6].

11



Closing Material

References
[1] Bill Paxton, Matteo Cantiello, Phil Arras, Lars Bildsten, Edward F. Brown, Aaron Dotter,

Christopher Mankovich, M. H. Montgomery, Dennis Stello, F. X. Timmes, and
Richard Townsend. “Modules For Experiments In Stellar Astrophysics (MESA):
Planets, Oscillations, Rotation, And Massive Stars”. The American Astronomical
Society (The Astrophysical Journal Supplement Series). 208 (3), August 2013.

[2] Jeffares, Alan. K-means: A Complete Introduction.

https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c,

2019.

[3] Yildirim, Soner. DBSCAN Clustering — Explained.

https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556, 2020.

[4] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,

Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques

Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gael

Varoquaux. “API design for machine learning software: experiences from the

scikit-learn project”. ECML PKDD Workshop: Languages for Data Mining and

Machine Learning. 108-122. 2013.

[5] Gudmundsson, Joachim, and Marc van Kreveld. (2006, November). Computing Longest

Duration Flocks in Trajectory Data. Proceedings of the 14th Annual ACM

International Symposium on Advances in Geographic Information Systems, 35-42.

[6] Jeung, Hoyoung, and Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, Heng Tao

Shen. Discovery of Convoys in Trajectory Databases.

https://doi.org/10.14778/1453856.1453971, 2010

Appendix A - Design Document
For more information about our plan for this project, we have provided a link to our design
document from the previous semester. Details about our project timeline and technology
considerations are explained in this document.

https://sdmay21-30.sd.ece.iastate.edu/docs/design_doc_final.pdf

12

https://sdmay21-30.sd.ece.iastate.edu/docs/design_doc_final.pdf


Appendix B - User Manual
Home Page
The home page is the entry point for the application. It allows the user to Create a New Query,
visit the About Page, or the Help Page. The About page contains background information about
our product, including a clustering explanation, database explanation, and developer/project
information. The Help Page contains this User Manual. Below the Create New Query button is a
list of saved user queries. After submitting a query, it is automatically saved to this list.

Query Page
The first step when creating a query is selecting the database. Two databases are implemented
for this version, COSMIC and POSYDON.

The second step is to select the attributes to cluster with. At least one attribute is required.

13



.

Third, attributes can be weighted. The larger the weight of an attribute, the more clustering will
consider it. The sum of weights must add to 100. Selecting “Allow empty inputs” will evenly
weight all attributes.

Fourth, the user can select which clustering algorithm to use. The two algorithms, K-Means and
DBScan, each have their own pros and cons. More detail is located in the About Page.

14



Fifth, based on the clustering algorithm selected, users may need to provide additional
parameters. For example, for K-Means users need to specify the number of clusters.

Lastly, users can review all input into the form. When satisfied, the query can be submitted to
the backend.

15



Graph Page
After a query submission, users can visualize their data with 2D and 3D graphs. The default
graph on query submission is the 2-attribute display over time.

The user can select different combinations of attributes to display using the configure button.
The type of graph can also change. The following are possible graphs: 1 attribute over time on a
2D graph, 2 attributes over time on a 3D graph, or 3 attributes at single time steps on a 3D
graph.

16



1 attribute over time on a 2D graph:

3 attributes at single time steps on a 3D graph:

17



Users can move the time step up and down to view how clusters change over time (Notice that
Timestep has changed from 7 to 8).

18



Appendix C - Deployment Manual
Creating Tables
To create all the necessary tables, run python manage.py migrate in the API folder to
automatically create tables. If you are confused about what tables you may or may not need,
refer to models.py in the API project. Those models should describe all the columns you need.

Importing Data
We imported a COSMIC database given to us into postgresql from a csv format, but we had to
break up our database into multiple files due to a limitation of postresql. We then added a table
that includes this information about each attribute in the stellar data. If you already did a
database migration like described above, this attributes table should already be created.

Table Name: attributes

database_name (TextField) display_name (TextField) enabled (Boolean)

We got the attribute list from this resource - Describing the output of COSMIC/BSE: Columns
names/Values/Units — cosmic 3.3.0 documentation (cosmic-popsynth.github.io)

We created an example csv file you can import particularly for COSMIC databases in API/data
in our project.

Once you completed that your attributes table should look like:

Deploying Application
For deployment, we leverage docker-compose. To deploy, make sure you have the following
environment variables set.

19

https://cosmic-popsynth.github.io/docs/stable/output_info/index.html
https://cosmic-popsynth.github.io/docs/stable/output_info/index.html


Environment Variable Description

DB_URL The url of the database

DB_USER Username for database

DB_PASSWORD Password for database

ENV Schema for database

Once you have these environment variables set, simply run this command from the command
line from the API directory.

docker-compose -f docker-compose.yml up -d

Docker compose should bring up both the API and UI and can be accessed from the host
machine. Port 8000 is used for the API and the UI uses the HTTP standard port 80.

20


